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Abstract 

Complete regioselective 1,6-hydrosilylation of dimethyl ci.r,cb-muconate took place by using trialkyl- 
silanes in the presence of RhCl(PPh,), as a catalyst. The novel, functionalized ketene silyl acetal thus 
obtained exhibited moderate electrophilic properties. Hydrosilylation of traltS,tram-muconate under 
similar conditions gave only a 3,4-adduct, whereas that of trans,cb-muconate resulted in a complicated 
mixture of adducts but for a 1,6-adduct. 

Among many transition metal complexes, chloroplatinic acid, the so-called 
Speier catalyst for hydrosilylation of simple alkenes, is known to be one of the 
most effective and even industrially important catalysts [ll. However, the mode of 
hydrosilylation of 1,3-dienes is markedly dependent on the Group VIII metal 
catalysts and on hydrosilanes employed. Thus, the addition pattern of a hydrosi- 
lane to isoprene, for example, varies from exclusively 1,4-head to form a (Z&2- 
methyl-2-butenylsilane by using a palladium catalyst [2,3], to mainly 1,4-tail to form 
a prenylsilane by a rhodium catalyst [3] or even to 1,Ztail giving a 3-methyl-3- 
butenylsilane by a platinum one [4]. Furthermore, we have recently found that a 
novel addition pattern of 1,Zhead gives 2-methyl-3-butenylsilane derivatives as the 
major product (up to 75% selectivity) in the presence of a ruthenium(I1) complex 
as catalyst [5]. A variety of observed regioselectivities in the hydrosilylation of 
isoprene must stem from the different properties of each metal species characteris- 
tic of forming either a r-ally1 metal intermediate or not. In addition, the nature of 
the silicon-metal bond, as a result of the oxidative addition of a hydrosilane to the 
metal catalyst, must play a crucial role. With regard to these general trends of the 
catalytic hydrosilylation of 1,3-dienes, we have now examined the hydrosilylation of 
dimethyl c&&s-muconate (1) as an unprecedented type of a 1,3-diene substrate 
(certain Q-unsaturated esters are known to undergo hydrosilylation using a 
rhodium catalyst to give ketene silyl acetals [61, that are very useful synthetic 
intermediates in organic synthesis). 
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A benzene (2 mL> solution of l(0.34 g, 2.0 mmol), HSiMe,Ph (0.30 g, 2.2 mmol) 
and RhChPPh,), (3.7 mg, 0.2 mol%) was heated under argon for 10 h. The 
resulting clear solution was evacuated to remove the solvent and excess hydrosi- 
lane to give a yellow oil (0.61 g), which could hardly be characterized on TLC 
presumably owing to a highly hydrolyzable product. Although a trace of catalyst 
contaminated the product, the latter could be characterized uniquely by ‘H and 
13C NMR spectroscopy as methyl 6-methoxy-6-(dimethylphenylsiloxy)-(3E, 52) 
hexadienoate (2a) [7*], a novel 1,6-hydrosilylation adduct consisting mainly of a 
single component (100% yield). The deuterium atom was incorporated in 2a-d, 
[7*] only at C-2 position, confirmed by using DSiMe,Ph and indicated in eq. 1. 
Geometrical assignment of 2a for 3E was made on the basis of J(H3-H4) (15.5 
Hz) and for 52 based on the facile thermal rearrangement of the silyl group, as 
described below. Also in essentially the same manner as above, the Rhr-catalyzed 
hydrosilylation of 1 with HSiMeEt, gave the 1,6-adduct 2b [7*] in good yield. 

0 (0.2 mol%) 1 3 5 

RhCl[PPh,), 

c,H@ 80 T 

(100%) 

1 2a : R3 = Me,Ph 

2b : R3 = MeEt, 

The new, functionalized ketene silyl acetal 2a, being an a,y-dienolate synthon, 
exhibited moderate electrophilic properties which are summarized in eq. 2. Firstly, 
2a was readily hydrolyzed and protonation took place exclusively at the (r(C-5) 
position to form dimethyl (3E)-hexenedioate (3), which reinforced the (3E)-geom- 
etry in 2a. Secondly, in the presence of a mild Lewis acid (ZnBr,), 2a reacted with 

I3 : 7) 

-78 T. 4h (49%) 

* Reference number with asterisk indicates a note in the list of references. 
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PhSCH $1 to give dimethyl 5-(phenylthiomethyl)-(3E)-hexenedioate (4) [8 * ] (a 
attack) and dimethyl 4-(phenylthiomethy&oE)-hexenedioate (5) [8 * I (y attack), 
respectively, the regioselectivity (4 vs. 5) being in a 3 : 7 ratio [9]. Thirdly, thermal 
rearrangement of 2a (120 o C> took place to give rise almost exclusively to dimethyl 
4-(dimethylphenylsilyl)-(2E)-hexenedioate (6) [lo*] in 35% yield. The result indi- 
cates that a facile 1,5 (0 + C) silyl group migration [ll], most probably owing to 
the (52)-geometry of 2a, afforded dimethyl 4-(dimethylphenylsilyl)-(2Z)- 
hexenedioate (7) [lo*] as the primary product that isomerized rapidly to give 6 
under the sterical conditions as depicted in Scheme 1. Interestingly, a catalytic 
amount of TiCl, also caused silyl group migration of 2a at -78 o C to give a 
mixture of 6 and 7. Compound 7 was obtained as a very minor component, isolated 
by column chromatography. 
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Scheme 1 

In an attempted hydrosilylation of 1, neither chloroplatinic acid nor Pd(PPh,), 
was effective and intractable adducts were obtained. Furthermore, Ru(OAc), 
(PPh,), was found to catalyze a slow isomerization of 1 into dimethyl mzns,truns- 
muconate (8) (20%) in the presence of HSiMe,CI at room temperature for 20 h. 
Finally, 8 was found to undergo hydrosilylation sluggishly under exactly the same 
conditions as depicted in eq. 1 to give 6 in 50% yield along with recovered 8. 
Dimethyl truns,cis-muconate (9) was also subjected to the Rh’-catalyzed hydrosily- 
lation with HSiMe,Ph, giving rise to a complicated mixture of adducts in terms of 
‘H NMR analysis of the reaction mixture. The apparent TLC analysis, however, 
exhibited none of 3 which must result from the ketene silyl acetal2a. We therefore 
conclude that a novel Rh’-catalyzed 1,6-hydrosilylation of muconates takes place 
only for c&is-muconate Cl), and neither for trum,trum- (8) nor truns,c&muconate 
(9). Relevance of these findings in terms of mechanistic implications will be the 
subject of further investigation. 
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